Visual Quality Assessment of Subspace Clusterings

نویسندگان

  • Michael Hund
  • Ines Färber
  • Michael Behrisch
  • Andrada Tatu
  • Tobias Schreck
  • Daniel A. Keim
  • Thomas Seidl
چکیده

The quality assessment of results of clustering algorithms is challenging as different cluster methodologies lead to different cluster characteristics and topologies. A further complication is that in high-dimensional data, subspace clustering adds to the complexity by detecting clusters in multiple different lower-dimensional projections. The quality assessment for (subspace) clustering is especially difficult if no benchmark data is available to compare the clustering results. In this research paper, we present SubEval, a novel subspace evaluation framework, which provides visual support for comparing quality criteria of subspace clusterings. We identify important aspects for evaluation of subspace clustering results and show how our system helps to derive quality assessments. SubEval allows assessing subspace cluster quality at three different granularity levels: (1) A global overview of similarity of clusters and estimated redundancy in cluster members and subspace dimensions. (2) A view of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title in English: Methods for Comparing Subspace Clusterings

of Licentiate's thesis Abstract: Subspace clustering methods aim to find groups of similar data points in various subspaces of the original data space. They combine and generalize clustering and feature extraction. Subspace clustering methods are becoming more and more popular , and new algorithms are being published at an increasing rate. These algorithms have been successfully applied for ins...

متن کامل

Spectral indexes of quality, diversity and stability in fuzzy clustering

Quality assessment in clustering is a long-standing problem. In this contribution we describe some indexes to measure properties of clusterings, taking advantage of the added flexibility provided by fuzzy paradigms. We first present an approach to evaluate some indicators of quality of an individual clustering, by analyzing the co-association matrix. Then we describe a technique to evaluate the...

متن کامل

Evaluating Clusterings by Estimating Clarity

In this thesis I examine clustering evaluation, with a subfocus on text clusterings specifically. The principal work of this thesis is the development, analysis, and testing of a new internal clustering quality measure called informativeness. I begin by reviewing clustering in general. I then review current clustering quality measures, accompanying this with an in-depth discussion of many of th...

متن کامل

انتخاب اعضای ترکیب در خوشه‌بندی ترکیبی با استفاده از رأی‌گیری

Clustering is the process of division of a dataset into subsets that are called clusters, so that objects within a cluster are similar to each other and different from objects of the other clusters. So far, a lot of algorithms in different approaches have been created for the clustering. An effective choice (can combine) two or more of these algorithms for solving the clustering problem. Ensemb...

متن کامل

Experiments on Comparing Graph Clusterings

A promising approach to compare graph clusterings is based on using measurements for calculating the distance. Existing measures either use the structure of clusterings or quality–based aspects. Each approach suffers from critical drawbacks. We introduce a new approach combining both aspects and leading to better results for comparing graph clusterings. An experimental evaluation of existing an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016